your one source for IT & AV

Training Presentation Systems Services & Consulting Cloud Services Purchase Client Center Computer Museum
Arrow Course Schedule | Classroom Rentals | Student Information | Free Seminars | Client Feedback | Partners | Survey | Standby Discounts

Implementing AI for Business Professionals

SS Course: 2001631

Course Overview


Implementing Artificial Intelligence for Business Professionals is an introductory-level course that delves into the core AI and how AI can be practically exploited in the modern business sense.  This one-day class explores the possibilities that exist to transform your business, and significantly improve KPIs across a broad range of business units and applications. 


Scheduled Classes


What You'll Learn


This course introduces AI from a practical applied business perspective. Through engaging lecture and demonstrations presented by our expert facilitator, students will:

  • Learn which data is most useful to collect now and why it’s important to start collecting that data as soon as possible
  • Understand the intersection between big data, data science and AI (Machine Learning / Deep Learning) and how they can help you reach your business goals and gain a competitive advantage.
  • Understand the factors that go into choosing a Data Science system, including whether to go with a cloud-based solution
  • Explore common tools and technologies to aid in making informed decisions
  • Gain the skills required to build your DS/ AI team


Viewing outline for:

Part 1: What is Data Science?

The Story of Data - How we Got Here

  • How Big Data exploded and what has changed to make “data” the new “oil”

AI and Machine Learning

  • The history of AI to ML to DL and an introduction to Neural Networks.  

Why is this data useful?

  • What it means to be data driven and how our paradigm is changing

Use Cases for Data Science

  • 20+ of the most common business use cases

Understanding the Data Science ecosystem

  • Overview of the key concepts related to Data Science to include open source, distributed computing, and cloud computing

Part 2: Making Data Science work for your organization

How can Data Science help guide your strategy

·        Use Data Science to guide strategy based on insights into your customers, your product performance, your competition, and additional factors

Forming your strategy for Big Data and Data Science

  • Step by step instructions for scoping your data science initiative based on your business goals, stakeholder input, putting together project teams, and determining the most relevant metrics

Implementing Data Science (Analytics, Algorithms, and Machine Learning)

  • How to select models and the importance of agile to realize business value

Choosing your tech

  • Choosing your technology for your proposed use case

Building your Team

  • The key roles that need to be filled in Big Data and Data Science programs and considerations for outsourcing roles

Governance and legal compliance

  • Principles in privacy, data protection, regulatory compliance and data governance and their impact on legal, reputational, and internal perspectives.  
  • Discussions of: PII, GDPR

Modern Practical Case Study

  • Explore a high-profile project failure and best practices for Data Science success

What the Future Holds




    Who Should Attend


    This course is intended to be an introduction to machine learning for non-technical business professionals. This course goes beyond the hype of machine learning and focuses on how it is used in business.  Attendees might include:

    • Traditional enterprise business decision makers
      • Product Managers
      • Tech Leads
      • Managing Partners
      • IT Managers
    • Analytics Managers who are leading a team of analysts 
    • Business Analysts who want to understand data science techniques
    • Analytics professionals who want to work in machine learning or artificial intelligence
    • Graduates looking to build a career in Data Science and machine learning
    • Experienced professionals who would like to harness machine learning in their fields to get more insight about customers

    Next Step Courses